2021年

62) P. Jiang, M. Zhou, D. Wen,  Y. Wang*. An experimental multiparameter investigation on the thermochemical structures of benchmark ethylene and propane counterflow diffusion flames and implications to their numerical modelling, Combustion and Flame, Accepted.

61) L. Ma, K-P. Cheong*, M. Yang, C. Yuan, W. Ren*.On the quantification of boundary layer effects on flame temperature measurements using line-of-sight absorption spectroscopy, Combustion Science and Technology, 2021.link

60) X. Kang*, Y. Wang*. Transient process of methane-oxygen diffusion flame-street establishment in a microchannel, Frontiers in Energy, 2021. link

59) Y. Deng, P. Zou, X. Kang*, Y. Wang*. Experimental investigations on non-premixed methane-air flames in radial microchannels with a controlled temperature profile, Combustion Science and Technology, 2021. link

58) L. Xu, F. Yan, M. Zhou, Y. Wang*.An experimental and modeling study on sooting characteristics of laminar counterflow diffusion flames with partial premixing, Energy  2021; 218, 119479. link

57)  M. Zhou, F. Yan, X. Zhong, L. Xu, Y. Wang*. Sooting characteristics of partially-premixed flames of ethanol and ethylene mixtures: Unravelling the opposing effects of ethanol addition on soot formation in non-premixed and premixed flames, Fuel 2021; 291, 120089. link

56) Y. Shang, Z. Wang, L. Ma, J. Shi, H. Ning*, W. Ren*, S. Luo, Shock tube measurement of NO time-histories in nitromethane pyrolysis using a quantum cascade laser at 5.26 μm, Proceedings of the Combustion Institute, 2021;38:1745-52. link

55) K. Xu, L.Ma, J. Chen, Xin Zhao, Q. Wang, R. Kan, Z. Zheng*, W. Ren*, Dual-comb Spectroscopy for Laminar Premixed Flames with a Free-running Fiber Laser, Combustion Science and Technology, 2021. link

54) X. Kang*, Y. Deng, J. Wang, A. Fan*, A versatile numerical tool for simulating combustion features at small-scales, Journal of Thermal Science 2021; 30: 343-361. link

2020年

53) L. Xu, F. Yan, Y. Wang*.A comparative study of the sooting tendencies of various C5–C8 alkanes, alkenes and cycloalkanes in counterflow diffusion flames. Applications in Energy and Combustion Science 2020; 1–4,100007. link

52) L. Zhao, W. Yao*, Y. Wang, J. Hu. Machine learning-based method for remaining range prediction of electric vehicles. IEEE Access 2020; 8:212423-41.  link

51) D. Wen, Y. Wang*. Spatially and temporally resolved temperature measurements in counterflow flames using a single interband cascade laser, Optics Express 2020; 28, 37879-37902.  link

50) B. Sun, X. Kang*, Y. Wang*. Numerical investigations on the methane-oxygen diffusion flame-street phenomena in a microchannel: Effects of wall temperatures, inflow rates and global equivalence ratios on flame behaviors and combustion performances, Energy 2020; 207, 118194. link 

49) W. Wang, L. Xu, J. Yan, Y. Wang*. Temperature dependence of the fuel mixing effect on soot precursor formation in ethylene-based diffusion flames, Fuel 2020; 267, 117121. link

48) W. Dai, F. Yan, L. Xu*, M. Zhou, Y. Wang*. Effects of carbon monoxide addition on the sooting characteristics of ethylene and propane counterflow diffusion flames, Fuel 2020; 271, 117674. link

47) L. Xu, F. Yan, W. Dai, M. Zhou, S.H. Chung, Y. Wang*. Synergistic effects on soot formation in counterflow diffusion flames of acetylene-based binary mixture fuels, Combustion and Flame 2020; 216, 24-28. link

46) Z. Li, P. Liu*, P. Zhang, Y. Wang, H. He, S.H. Chung, W.L. Roberts, Role of dimethyl ether in incipient soot formation in premixed ethylene flames, Combustion and Flame 2020; 216, 271-279. link

45) L. Xu, F. Yan, Y. Wang*, S.H. Chung. Chemical effects of hydrogen addition on soot formation in counterflow diffusion flames: Dependence on fuel type and oxidizer composition. Combustion and Flame 2020; 213, 14-25. link

44) L. Ma, K-P. Cheong, H. Ning, W. Ren*, An improved study of the uniformity of laminar premixed flames using laser absorption spectroscopy and CFD simulation, Experimental Thermal and Fluid Science, 2020; 112:110013.link

43) M. Raza, L. Ma, C. Yao, M. Yang, Z. Wang, W. Ren*, Q. Wang, R. Kan, MHz-rate scanned-wavelength direct absorption spectroscopy using a distributed feedback diode laser at 2.3 µm, Optics and Laser Technology, 2020; 130:106344.link

42) M. Yang, K. Liu, L. Ma, K-P. Cheong, Z. Wang, W. Ho, W. Ren*, Time-resolved characterization of non-thermal plasma-assisted photocatalytic removal of nitric oxide, Journal of Physics D: Applied Physics, 53 (2020) 01LT02 (7pp) .link

41) H. Ning, J. Wu, L. Ma, W. Ren*, Exploring the pyrolysis chemistry of prototype aromatic ester phenyl formate: Reaction pathways, thermodynamics and kinetics, Combustion and Flame, 2020; 211: 337−46. link

40) P. Zou, Y. Deng, X. Kang*, J. Wang, A numerical study on premixed hydrogen/air flames in a narrow channel with thermally orthotropic walls, International Journal of Hydrogen Energy 2020; 45: 20436-20448.link

2019年

39) Y. Wang*, S.H. Chung*. Soot formation in laminar counterflow flames. Progress in Energy and Combustion Science 2019; 74:152-238.  link

38) X. Kang, B. Sun, J. Wang, Y. Wang*. A numerical investigation on the thermo-chemical structures of methane-oxygen diffusion flame-streets in a microchannel. Combustion and Flame 2019; 206:266-81. link

37) N.M. Mahmoud, F. Yan, M. Zhou, L. Xu, Y. Wang*. Coupled effects of carbon dioxide and water vapor addition on soot formation in ethylene diffusion flames. Energy and Fuels 2019; 33:5582-96. link

36) F. Yan, M. Zhou, L. Xu, Y. Wang*, S.H. Chung. An experimental study on the spectral dependence of light extinction in sooting ethylene counterflow diffusion flames. Experimental Thermal and Fluid Science 2019; 100:259-70. link

35) F. Yan, L. Xu, Y. Wang*, S. Park, S.M. Sarathy, S.H. Chung. On the opposing effects of methanol and ethanol addition on PAH and soot formation in ethylene counterflow diffusion flames. Combustion and Flame 2019; 202:228-42. link

34) N.M. Mahmoud, F. Yan, Y. Wang*. Effects of fuel inlet boundary condition on aromatic species formation in coflow diffusion flames. Journal of the Energy Institute 2019; 92:288-97. link

33) L. Ma, Z. Wang, K-P. Cheong, H, Ning, and W. Ren*, Mid-infrared heterodyne phase-sensitive dispersion spectroscopy in flame measurements, Proceedings of the Combustion Institute, 2019; 37: 1329−1336.link

32) J. Wu, H. Ning, L. Ma, P. Zhang and W. Ren*, Cascaded group-additivity ONIOM: A new method to approach CCSD(T)/CBS energies of large aliphatic hydrocarbons, Combustion and Flame, 2019; 201:31-43. link

2018年

31) Y. Wang*, S. Park, S.M. Sarathy, S.H. Chung. A comparative study on the sooting tendencies of various 1-alkene fuels in counterflow diffusion flames. Combustion and Flame 2018; 192:71-85. link

30) L. Xu, F. Yan, M. Zhou, Y. Wang*, S.H. Chung. Experimental and soot modeling studies of ethylene counterflow diffusion flames: Non-monotonic influence of the oxidizer composition on soot formation. Combustion and Flame 2018; 197:304-18. link

29) L. Xu, F. Yan, Y. Wang*. Effects of Hydrogen Addition on the Standoff Distance of Premixed Burner-Stabilized Flames of Various Hydrocarbon Fuels. Energy and Fuels 2018; 32:2385-96. link

28) Z. Li, H.M.F. Amin, P. Liu*, Y. Wang, S.H. Chung, W.L. Roberts. Effect of dimethyl ether (DME) addition on sooting limits in counterflow diffusion flames of ethylene at elevated pressures. Combustion and Flame 2018; 197:463-70. link

27) F. Yan, L. Xu, Y. Wang*. Application of hydrogen enriched natural gas in spark ignition IC engines: from fundamental fuel properties to engine performances and emissions. Renewable and Sustainable Energy Reviews 2018; 82:1457-88. link

26) J. Wu, H. Ning, L. Ma, and W. Ren*, Pressure-dependent kinetics of methyl formate reaction with OH at combustion, atmospheric and interstellar temperature, Physical Chemistry Chemical Physics, 2018; 20(41), 26190−99 .link

25) H. Ning, D. Liu, J. Wu, L. Ma, W. Ren*, A. Farooq, A theoretical and shock tube kinetic study on hydrogen abstraction from phenyl formate, Physical Chemistry Chemical Physics, 2018; 20, 21280−85 .link

24) J. Wu, H. Ning, L. Ma, and W. Ren*, Accurate prediction of bond dissociation energies of large n-Alkanes using ONIOM-CCSD(T)/CBS methods, Chemical Physics Letter, 2018; 699, 139−145 .link

23) L. Ma, H. Ning, J. Wu, K-P. Cheong, W. Ren*, Characterization of temperature and soot volume fraction in the laminar premixed sooting flame: laser absorption/extinction measurement and 2D CFD simulation, Energy & Fuels, 2018; 32(12), 12962−70 .link

22) L. Ma, H. Ning, J. Wu, W. Ren*, In situ flame temperature measurements using a mid-infrared two-line H2O laser-absorption thermometry, Combustion Science and Technology, 2018; 190(3), 392−407.link

21) L. Ma, Z. Wang, K-P. Cheong, H, Ning, and W. Ren*, Temperature and H2O sensing in laminar premixed flames using mid-infrared heterodyne phase-sensitive dispersion spectroscopy, Applied Physics B: Lasers and Optics, 2018; 124:117.link

20) K-P. Cheong, L. Ma, Z. Wang, W. Ren*, Influence of Line Pair Selection on Flame Tomography Using Infrared Absorption Spectroscopy , Applied Spectroscopy, 2018; 73(5): 529−39.link

2017年

19) S. Park, Y. Wang*, S.H. Chung, S.M. Sarathy. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels. Combustion and Flame 2017; 178:46-60. link

18) K. Moshammer, L. Seidel, Y. Wang, H. Selim, S.M. Sarathy, F. Mauss, N. Hansen*. Aromatic ring formation in opposed-flow diffusive 1,3-butadiene flames. Proceedings of the Combustion Institute 2017; 36:947-55. link

17) H. Ning, J. Wu, L. Ma, W. Ren, D. F. Davidson, and R. K. Hanson, Chemical kinetic modeling and shock tube study of methyl propanoate decomposition, Combustion and Flame, 2017; 184:30-40. link

16) J. Wu, F. Khaled, H. Ning, L. Ma, A. Farooq, and W. Ren*, Theoretical and shock tube study of the rate constants for hydrogen abstraction reactions of ethyl formate, The Journal of Physical Chemistry A, 2017; 121:6304-13.link

15) H. Ning, J. Wu, L. Ma, W. Ren*, D. F. Davidson, and R. K. Hanson, A Combined ab Initio, kinetic modeling and shock tube study of the thermal decomposition of ethyl formate, The Journal of Physical Chemistry A, 2017; 121:6568-79.link

14) C. Shi, D. Wang, Z. Wang, L. Ma, K. Xu, S.-C. Chen, W. Ren*, A mid-infrared fiber-coupled QEPAS nitric oxide sensor for real-time engine exhaust monitoring, IEEE Sensors Journal 2017; 17:7418-24.link

13) L. Ma, L.Y. Lau, and W. Ren*, Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy, Applied Physics B: Lasers and Optics, 2017;123:83.link

12) X. Kang, A. Veeraragavan*, Experimental demonstration of a novel approach to increase power conversion potential of a hydrocarbon fuelled, portable, thermophotovoltaic system, Energy Conversion and Management 2017; 133: 127-137.link

11) X. Kang, R. J. Gollan, P. A. Jacobs, A. Veeraragavan*, On the influence of modelling choices on combustion in narrow channels, Computers & Fluids 2017; 144: 117-136.link

10) X. Kang*, R. J. Gollan, P. A. Jacobs, A. Veeraragavan, Numerical study of the effect of wall temperature profiles on the premixed methane–air flame dynamics in a narrow channel, RSC Advances 2017; 7(63): 39940-39954. link

2016年

9) X. Kang, R. J. Gollan, P. A. Jacobs, A. Veeraragavan*, Suppression of instabilities in a premixed methane-air flame in a narrow channel via hydrogen/carbon monoxide addition, Combustion and Flame 2016; 173: 266-275.link

8) Y. Wang*, S.H. Chung. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames. Combustion and Flame 2016; 165:433-44. link

7) P. Selvaraj, P.G. Arias, B.J. Lee, H.G. Im*, Y. Wang, Y. Gao, et al. A computational study of ethylene–air sooting flames: Effects of large polycyclic aromatic hydrocarbons. Combustion and Flame 2016; 163:427-36. link

6) Y. Wang*, S.H. Chung. Formation of soot in counterflow diffusion flames with carbon dioxide dilution. Combustion Science and Technology 2016; 188:805-17. link

2015年及以前

5) X. Kang, A. Veeraragavan*, Experimental investigation of flame stability limits of a mesoscale combustor with thermally orthotropic walls, Applied Thermal Engineering 2015; 85: 234-242. link

4) Y. Wang, A. Raj, S.H. Chung*. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels. Combustion and Flame 2015; 162:586-96. link

3) Y. Wang, S.H. Chung*. Effect of strain rate on sooting limits in counterflow diffusion flames of gaseous hydrocarbon fuels: Sooting temperature index and sooting sensitivity index. Combustion and Flame 2014; 161:1224-34. link

2) Y. Wang, A. Raj, S.H. Chung*. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames. Combustion and Flame 2013; 160, 1667-1676. link

1) P.H. Joo, Y. Wang, A. Raj, S.H. Chung*. Sooting limit in counterflow diffusion flames of ethylene/propane fuels and implication to threshold soot index. Proceedings of the Combustion Institute 2013; 34:1803-9. link